The Third Way. My academic background is in the arcane field of operations research. Often, this is combined with systems engineering. I sometimes find myself perusing the college curricula for this field. (I know, I'm trying to get out more!)
There are normally two "basic" courses in OR. One centers on determininstic methods (linear programming and optimization of nonlinear systems). It teaches methods that really made their appearance in the 1950s and 60s. The second focuses on stochastic methods (Monte Carlo simulations, Markov Processes, and dynamic programming). This field had to wait for improved computer capabilties of the 1960s and 70s before the stochastic decision theory could be widely adopted. Except for improvements in software, the methods have not seen much revision since then.
Let's compare this with the typical physics curriculum. Physics begins with mechanics. Here, we meet Sir Isaac Newton, and learn concepts of force and acceleration. Date of origin: the 60s. The 1660s, that is. This is follwed by electricity and magnetism, much of which was derived and develped in the time of Michael Faraday. E&M's emergence can be dated around 1800. But, physics has a third "basic" course. It's often called 'modern physics' or 'quantum physics'. Here, we learn about the weird and wonderful world of tunneling electrons, wave functions, and Heisenbergian uncertainty. The period of development can probably be placed within a few decades of 1930.
Operations Research will, someday, also have a third course. It will encompass chaos and complexity. It will focus on priniciples of adaptability, non-equilibrium systems control, scale-free distributions, and Bayesian anaysis. The primary tools, the equivalent of LINDO and discrete event simulations, will be agent-based models and genetic algorithms. When the historians look back, they will probably place the "birthday" within a few years of, well, 2006.
Oh brave, new world
That has such people in't!
No comments:
Post a Comment